Can You Squeeze Your Quads? Extra Credit Problem The Fiddler on the Proof of Nov 10, 2023

How can you position four points, $\mathbf{A}, \mathbf{B}, \mathbf{C}, \& \mathbf{D}$, on a unit circle centered at $\mathbf{0}$, to maximize the combined area of the quadrilateral $\mathbf{A B C D}$, and a triangle $\mathbf{A B D}$?

The symmetries of the problem convince me that $\mathbf{A C}$ must be diameter, and that $\mathbf{B D}$ must be perpendicular to AC. That means that the only significant variable is the distance between point \mathbf{O}, the center of the circle, and point \mathbf{P}, the intersection of $\mathbf{A C}$ and $\mathbf{B D}$. We shall call that distance: x.

$$
\begin{gathered}
\mathbf{P B}=\sqrt{1-x^{2}} \\
\text { Area of } \mathbf{A B C D}=2 \sqrt{1-x^{2}} \\
\text { Area of } \mathbf{A B D}=(x+1) \sqrt{1-x^{2}} \\
\text { Total Area }=2 \sqrt{1-x^{2}}+(x+1) \sqrt{1-x^{2}}=(x+3) \sqrt{1-x^{2}}
\end{gathered}
$$

To maximize this function with respect to x, I relied on my friend, Wolfram Alpha:

```
maximize (x+3)*sqrt(1-x^2)
```

Input interpretation

$$
\text { maximize } \quad(x+3) \sqrt{1-x^{2}}
$$

Global maximum Exact form
$\max \left\{(x+3) \sqrt{1-x^{2}}\right\}=\frac{1}{8} \sqrt{214+102 \sqrt{17}}$ at $x=\frac{\sqrt{17}}{4}-\frac{3}{4}$
Global maximum Approximate form
$\max \left\{(x+3) \sqrt{1-x^{2}}\right\} \approx 3.1488$ at $x \approx 0.28078$
Plot

Therefore the maximum combined area of the quadrilateral and triangle is:

$$
\frac{1}{8} \sqrt{214+102 \sqrt{17}} \approx 3.1488
$$

Which is delightfully close to π, the area of the circumscribed unit circle!

Dean Ballard
Nov. 12, 2023

